Thomas Barthel

Thomas Barthel

Charles H. Townes Assistant Professor of Physics

Office Location: 
287 Physics Bldg, Durham, NC 27708
Front Office Address: 
Box 90305, Durham, NC 27708-0305
Phone: 
(919) 660-2965

Overview

Theoretical and Numerical Quantum Many-Body Physics

Education & Training

  • Ph.D., Rheinisch-Westfalische Technische Hochshule Aachen (Germany) 2009

Selected Grants

Quantum Computing in Chemical and Material Sciences awarded by Department of Energy (Co-Principal Investigator). 2018 to 2021

Quantum Computing in Chemical and Material Sciences awarded by Department of Energy (Co-Principal Investigator). 2018 to 2021

Fellowships, Supported Research, & Other Grants

Start-up grant awarded by Duke University (2015)

Graduate studies scholarship awarded by German National Merit Foundation (2006)

Scholarship awarded by German National Merit Foundation (2000)

Binder, Moritz, and Thomas Barthel. “Infinite boundary conditions for response functions and limit cycles within the infinite-system density matrix renormalization group approach demonstrated for bilinear-biquadratic spin-1 chains.” Physical Review B, vol. 98, no. 23, American Physical Society (APS), Dec. 2018. Manual, doi:10.1103/physrevb.98.235114. Full Text

Barthel, T., and J. Lu. “Fundamental Limitations for Measurements in Quantum Many-Body Systems.” Physical Review Letters, vol. 121, no. 8, Aug. 2018. Scopus, doi:10.1103/PhysRevLett.121.080406. Full Text

Barthel, Thomas, et al. “Matrix product algorithm for stochastic dynamics on networks applied to nonequilibrium Glauber dynamics..” Physical Review. E, vol. 97, no. 1–1, Jan. 2018. Epmc, doi:10.1103/physreve.97.010104. Full Text

Schlittler, T, Thomas, et al. “Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps.” Phys. Rev. B, vol. 96, Nov. 2017, pp. 195142–195142. Manual, doi:10.1103/PhysRevB.96.195142. Full Text

Binder, M., and T. Barthel. “Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles.” Physical Review B, vol. 95, no. 19, May 2017. Scopus, doi:10.1103/PhysRevB.95.195148. Full Text

Barthel, T. “Matrix product purifications for canonical ensembles and quantum number distributions.” Physical Review B, vol. 94, no. 11, Sept. 2016. Scopus, doi:10.1103/PhysRevB.94.115157. Full Text

Gori, L., et al. “Finite-temperature effects on interacting bosonic one-dimensional systems in disordered lattices.” Physical Review A, vol. 93, no. 3, Mar. 2016. Scopus, doi:10.1103/PhysRevA.93.033650. Full Text

Schlittler, Thiago, et al. “Phase Diagram of an Extended Quantum Dimer Model on the Hexagonal Lattice..” Physical Review Letters, vol. 115, no. 21, Nov. 2015. Epmc, doi:10.1103/physrevlett.115.217202. Full Text

Binder, M., and T. Barthel. “Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution.” Physical Review B  Condensed Matter and Materials Physics, vol. 92, no. 12, Sept. 2015. Scopus, doi:10.1103/PhysRevB.92.125119. Full Text

Mölter, J., et al. “Bound states and entanglement in the excited states of quantum spin chains.” Journal of Statistical Mechanics: Theory and Experiment, vol. 2014, no. 10, Oct. 2014. Scopus, doi:10.1088/1742-5468/2014/10/P10029. Full Text

Pages