Stefano Curtarolo

Stefano Curtarolo

Professor in the Department of Mechanical Engineering and Materials Science

Professor in the Department of Physics (Secondary)

Professor in the Department of Electrical and Computer Engineering (Secondary)

Faculty Network Member of The Energy Initiative

Office Location: 
301 Hudson Hall, Box 90300, Durham, NC 27708
Front Office Address: 
301 Hudson Hall, Box 90300, Durham, NC 27708-0300
Phone: 
(919) 660-5506

Overview

RESEARCH FIELDS

  • Nanoscale Science of Energy
  • Computational materials science
  • Nanotube growth characterization
  • Alloy theory
  • Superlubricity on quasicrystals
  • Superconductivity in Metal borides
  • Genetic Approaches to QM Predictions of Materials Structures
  • Materials for Nuclear Detection

The research is multidisciplinary and makes use of state of the art techniques from fields like materials science, chemistry, physics, quantum mechanics, mathematics and computer science.

Education & Training

  • Ph.D., Massachusetts Institute of Technology 2003

  • M.S., Pennsylvania State University 1999

  • M.S., University of Padua (Italy) 1995

Agapito, L. A., et al. “Reformulation of DFT + U as a pseudohybrid hubbard density functional for accelerated materials discovery.” Physical Review X, vol. 5, no. 1, Jan. 2015. Scopus, doi:10.1103/PhysRevX.5.011006. Full Text

de Jong, Maarten, et al. “Charting the complete elastic properties of inorganic crystalline compounds.Scientific Data, vol. 2, Jan. 2015, p. 150009. Epmc, doi:10.1038/sdata.2015.9. Full Text

Curtarolo, S., et al. “Reformulation of DFT+U as a pseudo-hybrid Hubbard density functional for accelerated materials discovery.” Phys. Rev., vol. X 5, no. 011006, 2015.

Carrete, J., et al. “Nanograined half-heusler semiconductors as advanced thermoelectrics: An ab initio high-throughput statistical study.” Advanced Functional Materials, vol. 24, no. 47, Dec. 2014, pp. 7427–32. Scopus, doi:10.1002/adfm.201401201. Full Text

Yong, J., et al. “Robust topological surface state in Kondo insulator SmB6 thin films.” Applied Physics Letters, vol. 105, no. 22, Dec. 2014. Scopus, doi:10.1063/1.4902865. Full Text

Toher, C., et al. “High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model.” Physical Review B  Condensed Matter and Materials Physics, vol. 90, no. 17, Nov. 2014. Scopus, doi:10.1103/PhysRevB.90.174107. Full Text

Curtarolo, Stefano, et al. “The high-throughput highway to computational materials design.Nature Materials, vol. 12, no. 3, Mar. 2013, pp. 191–201. Epmc, doi:10.1038/nmat3568. Full Text

Fuelling discovery by sharing.” Nature Materials, vol. 12, no. 3, Springer Science and Business Media LLC, Mar. 2013, pp. 173–173. Crossref, doi:10.1038/nmat3594. Full Text

Yang, Kesong, et al. “A search model for topological insulators with high-throughput robustness descriptors.Nature Materials, vol. 11, no. 7, July 2012, pp. 614–19. Epmc, doi:10.1038/nmat3332. Full Text

Chepulskii, R. V., and S. Curtarolo. “Revealing low-temperature atomic ordering in bulk Co-Pt with the high-throughput ab-initio method.” Applied Physics Letters, vol. 99, no. 26, Dec. 2011. Scopus, doi:10.1063/1.3671992. Full Text

Pages