Martin Fischer

Martin Fischer

Associate Research Professor in the Department of Chemistry

Associate Research Professor of Physics (Secondary)

Faculty Network Member of the Duke Institute for Brain Sciences

Office Location: 
2216 French Science Center, 124 Science Drive, Durham, NC 27708
Front Office Address: 
Box 90346, Durham, NC 27708-0346
(919) 660-1523


Dr. Fischer’s research focuses on exploring novel nonlinear optical contrast mechanisms for molecular imaging. Nonlinear optical microscopes can provide non-invasive, high-resolution, 3-dimensional images even in highly scattering environments such as biological tissue.

Established contrast mechanisms, such as two-photon fluorescence or harmonic generation, can image a range of targets (such as autofluorescent markers or some connective tissue structure), but many of the most molecularly specific nonlinear interactions are harder to measure with power levels one might be willing to put on tissue. In order to use these previously inaccessible interactions as structural and molecular image contrasts we are developing ultrafast laser pulse shaping and pulse shape detection methods that dramatically enhance measurement sensitivity. Applications of these microscopy methods range from imaging biological tissue (mapping structure, endogenous tissue markers, or exogenous contrast agents) to characterization of nanomaterials (such as graphene and gold nanoparticles). The molecular contrast mechanisms we originally developed for biomedical imaging also provide pigment-specific signatures for paints used in historic artwork. Recently we have demonstrated that we can noninvasively image paint layers in historic paintings and we are currently developing microscopy techniques for use in art conservation and conservation science.

Education & Training

  • Ph.D., University of Texas, Austin 2001

  • M.A., University of Texas, Austin 1993

Selected Grants

Advanced Light Imaging and Spectroscopy (ALIS) awarded by (Principal Investigator). 2019 to 2022

OP: Collaborative Research: Multimodal Molecular Spectroscopy and Imaging in Biological Tissue and Historical Artwork awarded by National Science Foundation (Principal Investigator). 2016 to 2019

Improving Melanoma Diagnosis with Pump-Probe Optical Imaging awarded by National Institutes of Health (Researcher). 2013 to 2017

Fischer, M. C., and M. G. Raizen. Experiments on quantum transport of ultra-cold atoms in optical potentials. Vol. 789, 2009, pp. 205–37. Scopus, doi:10.1007/978-3-642-03174-8_8. Full Text

Yu, Jin, et al. “Visualizing the impact of chloride addition on the microscopic carrier dynamics of MAPbI3 thin films using femtosecond transient absorption microscopy.” The Journal of Chemical Physics, vol. 151, no. 23, AIP Publishing, Dec. 2019, pp. 234710–234710. Crossref, doi:10.1063/1.5127875. Full Text

Yu, Jin, et al. “Probing the Spatial Heterogeneity of Carrier Relaxation Dynamics in CH 3 NH 3 PbI 3 Perovskite Thin Films with Femtosecond Time‐Resolved Nonlinear Optical Microscopy.” Advanced Optical Materials, vol. 7, no. 22, Wiley, Nov. 2019, pp. 1901185–1901185. Crossref, doi:10.1002/adom.201901185. Full Text

Yu, Jin, et al. “Visualization of vermilion degradation using pump-probe microscopy.” Science Advances, vol. 5, no. 6, American Association for the Advancement of Science (AAAS), June 2019, pp. eaaw3136–eaaw3136. Crossref, doi:10.1126/sciadv.aaw3136. Full Text

Yang, Joel K. W., et al. “Design, Manufacture, and Analysis of Photonic Materials for Historical and Modern Visual Art: feature issue introduction.” Optical Materials Express, vol. 9, no. 5, The Optical Society, May 2019, pp. 2128–2128. Crossref, doi:10.1364/ome.9.002128. Full Text

Ju, Kuk-Youn, et al. “Unraveling the molecular nature of melanin changes in metastatic cancer.” Journal of Biomedical Optics, vol. 24, no. 05, SPIE-Intl Soc Optical Eng, Apr. 2019, pp. 1–1. Crossref, doi:10.1117/1.jbo.24.5.051414. Full Text

Ju, Kuk-Youn, et al. “Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin.” Acs Nano, vol. 12, no. 12, American Chemical Society (ACS), Dec. 2018, pp. 12050–61. Crossref, doi:10.1021/acsnano.8b04905. Full Text

Yu, Jin, et al. “Spectroscopic Differentiation and Microscopic Imaging of Red Organic Pigments Using Optical Pump–Probe Contrast.” Analytical Chemistry, vol. 90, no. 21, American Chemical Society (ACS), Nov. 2018, pp. 12686–91. Crossref, doi:10.1021/acs.analchem.8b02949. Full Text

Liu, Xiaojun, et al. “Enhanced Two-Photon Photochromism in Metasurface Perfect Absorbers.” Nano Letters, vol. 18, no. 10, American Chemical Society (ACS), Oct. 2018, pp. 6181–87. Crossref, doi:10.1021/acs.nanolett.8b02042. Full Text

Stanton, Ian N., et al. “Power-Dependent Radiant Flux and Absolute Quantum Yields of Upconversion Nanocrystals under Continuous and Pulsed Excitation.” The Journal of Physical Chemistry C, vol. 122, no. 1, American Chemical Society (ACS), Jan. 2018, pp. 252–59. Crossref, doi:10.1021/acs.jpcc.7b11929. Full Text

Wilson, Jesse W., et al. “Comparison of pump-probe and hyperspectral imaging in unstained histology sections of pigmented lesions.” Biomedical Optics Express, vol. 8, no. 8, The Optical Society, Aug. 2017, pp. 3882–3882. Crossref, doi:10.1364/boe.8.003882. Full Text


Robles, Francisco E., et al. “Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography (Conference Presentation).” Multiphoton Microscopy in the Biomedical Sciences Xvi, SPIE, 2016. Crossref, doi:10.1117/12.2212875. Full Text

Warren, W. S., et al. “Melanin-targeted nonlinear microscopy for label-free molecular diagnosis and staging.” Optics Infobase Conference Papers, 2016. Scopus, doi:10.1364/TRANSLATIONAL.2016.TTh3B.3. Full Text

Villafana, Tana, et al. “3D chemical imaging of historic artworks and cultural heritage materials.” Abstracts of Papers of the American Chemical Society, vol. 251, AMER CHEMICAL SOC, 2016.

Wilson, J. W., et al. “Real-time digital signal processing in multiphoton and time-resolved microscopy.” Progress in Biomedical Optics and Imaging  Proceedings of Spie, vol. 9703, 2016. Scopus, doi:10.1117/12.2218102. Full Text

Villafana, T. E., et al. “Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture.” Proceedings of Spie  the International Society for Optical Engineering, vol. 9527, 2015. Scopus, doi:10.1117/12.2184758. Full Text

Wilson, J. W., et al. “Separating higher-order nonlinearities in transient absorption microscopy.” Proceedings of Spie  the International Society for Optical Engineering, vol. 9584, 2015. Scopus, doi:10.1117/12.2187133. Full Text

Wilson, J. W., et al. “Optical clearing and multiphoton imaging of paraffin-embedded specimens.” Progress in Biomedical Optics and Imaging  Proceedings of Spie, vol. 8588, 2013. Scopus, doi:10.1117/12.2003155. Full Text

Robles, F. E., et al. “Adapting phasor analysis for nonlinear pump-probe microscopy.” Progress in Biomedical Optics and Imaging  Proceedings of Spie, vol. 8589, 2013. Scopus, doi:10.1117/12.2002600. Full Text

Li, B., et al. “Homodyne near-degenerate four-wave-mixing microscopy for graphene imaging and biomedical applications.” 2012 Conference on Lasers and Electro Optics, Cleo 2012, 2012.


Jiang, Jun, et al. Crossed-beam pump-probe microscopy. Apr. 2020. Epmc, doi:10.1364/oe.389004. Full Text