Kate Scholberg

Kate Scholberg

Arts & Sciences Distinguished Professor of Physics

Professor of Physics

Associate Chair of Physics

Associate of the Duke Initiative for Science & Society

Bass Fellow

Office Location: 
273 Physics Bldg, Durham, NC 27708
Front Office Address: 
Box 90305, Durham, NC 27708-0305
Phone: 
(919) 660-2962

Overview

Prof. Scholberg's broad research interests include experimental elementary particle physics, astrophysics and cosmology. Her main specific interests are in neutrino physics: she studies neutrino oscillations with the Super-Kamiokande experiment, a giant underground water Cherenkov detector located in a mine in the Japanese Alps. Super-K was constructed to search for proton decay and to study neutrinos from the sun, from cosmic ray collisions in the atmosphere, and from supernovae. On Super-K, Prof. Scholberg's primary involvement is with the atmospheric neutrino data analysis, which in 1998 yielded the first convincing evidence for neutrino oscillation (implying the existence of non-zero neutrino mass).

One of the most important questions that we may be able to answer with neutrino oscillation experiments over the next couple of decades is the question of CP (charge conjugation-parity) violation in neutrinos. It's now well known that processes involving quarks violate CP symmetry; it's suspected that the same is true for leptons (such as neutrinos), but leptonic CP violation is as yet unobserved. We hope that understanding of CP violation, along with knowledge of the other neutrino parameters, may lead to insight into the question of the observed matter-antimatter asymmetry of the universe. The long-term program neutrino oscillation physics aims to answer these questions.

The next steps in neutrino oscillation research involve artificial beams of neutrinos sent hundreds of kilometers from accelerator laboratories to underground detectors. The T2K ("Tokai to Kamioka") high-intensity beam experiment sends neutrinos 300 km from an accelerator at the J-PARC facility in Japan to Super-K, and is currently exploring unknown oscillation parameters. The DUNE (Deep Underground Neutrino Experiment) is a planned next-generation U.S.-based international experiment designed to observe neutrinos beamed from Fermilab to a large liquid argon detector at a new underground facility in South Dakota.  One of Prof. Scholberg's particular interests on DUNE is the detector's sensitivity to the huge bursts of neutrinos from core-collapse supernovae.

Prof. Scholberg serves as spokesperson of COHERENT, a multi-detector experiment with the primary physics goal of measuring CEvNS (Coherent Elastic Neutrino Nucleus Scattering) using the high-intensity neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory in Tennessee.   CEvNS was measured for the first time by the collaboration in 2017.

Prof. Scholberg also coordinates SNEWS, the SuperNova Early Warning System, an inter-experiment collaboration of detectors with Galactic supernova sensitivity. Neutrinos from a core collapse will precede the photon signal by hours; therefore coincident observation of a burst in several neutrino detectors will be a robust early warning of a visible supernova. The goals of SNEWS are to provide the astronomical community with a prompt alert of a Galactic core collapse, as well as to optimize global sensitivity to supernova neutrino physics.

Education & Training

  • Ph.D., California Institute of Technology 1996

  • M.S., California Institute of Technology 1991

  • B.Sc., McGill University (Canada) 1989

Selected Grants

Photon Simulation in LBNE awarded by (Principal Investigator). 2014 to 2015

Research in High Energy Physics at Duke University awarded by Department of Energy (Co-Principal Investigator). 1991 to 2013

Conference for Undergraduate Women in Physics awarded by National Science Foundation (Principal Investigator). 2010 to 2011

CAREER: Next Steps for Neutrino Oscillation Physics awarded by National Science Foundation (Principal Investigator). 2004 to 2010

Research in High Energy Physics at Duke University awarded by Department of Energy (Co-Principal Investigator). 1991 to 2009

Hadron Collider Physics Conference awarded by National Science Foundation (Principal Investigator). 2006 to 2007

Collaborative Research: SNEWS: The Supernova Early Warning System (transfer grant) awarded by National Science Foundation (Principal Investigator). 2004 to 2006

Pages

Abe, K., et al. “Search for heavy neutrinos with the T2K near detector ND280.” Physical Review D, vol. 100, no. 5, Sept. 2019. Scopus, doi:10.1103/PhysRevD.100.052006. Full Text

Jiang, M., et al. “Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV.” Progress of Theoretical and Experimental Physics, vol. 2019, no. 5, May 2019. Scopus, doi:10.1093/ptep/ptz015. Full Text

Wan, L., et al. “Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos at Super-Kamiokande.” Physical Review D, vol. 99, no. 3, Feb. 2019. Scopus, doi:10.1103/PhysRevD.99.032005. Full Text

Abe, K., et al. “Search for neutral-current induced single photon production at the ND280 near detector in T2K.” Journal of Physics G: Nuclear and Particle Physics, vol. 46, no. 8, Jan. 2019. Scopus, doi:10.1088/1361-6471/ab227d. Full Text

Abe, K., et al. “Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×10^{21} Protons on Target.Physical Review Letters, vol. 121, no. 17, Oct. 2018, p. 171802. Epmc, doi:10.1103/physrevlett.121.171802. Full Text

Pages

Adams, C., and C. others. “Scientific Opportunities with the Long-Baseline Neutrino Experiment.” Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (Css2013): Minneapolis, Mn, Usa, July 29 August 6, 2013, 2013.

Choi, K., et al. “Search for light WIMP captured in the Sun using contained events in Super-Kamiokande.” Proceedings of the 33rd International Cosmic Rays Conference, Icrc 2013, vol. 2013-October, 2013.

Scholberg, Kate. “Neutrino Experiments at the SNS.” Intersections of Particle and Nuclear Physics, edited by M. L. Marshak, vol. 1182, AMER INST PHYSICS, 2009, pp. 76–79.

Scholberg, Kate. “CLEAR: Prospects for a low threshold neutrino experiment at the Spallation Neutron Source.” Journal of Physics: Conference Series, vol. 136, no. 4, IOP Publishing, 2008, pp. 042044–042044. Crossref, doi:10.1088/1742-6596/136/4/042044. Full Text

Cravens, P., et al. “Current status of solar neutrinos at super-kamiokande.” Annual Meeting of the Division of Particles and Fields of the American Physical Society, Dpf 2006, and the Annual Fall Meeting of the Japan Particle Physics Community, American Physical Society, 2006.

Cravens, P., et al. “Current status of solar neutrinos at super-kamiokande.” Annual Meeting of the Division of Particles and Fields of the American Physical Society, Dpf 2006, and the Annual Fall Meeting of the Japan Particle Physics Community, 2006.

Pages