Gleb Finkelstein

Gleb Finkelstein

Professor of Physics

Faculty Network Member of the Duke Institute for Brain Sciences

Office Location: 
093 Physics, Science Drive, Durham, NC 27708
Front Office Address: 
Box 90305, Durham, NC 27708-0305
(919) 660-2523


Gleb Finkelstein is an experimental physicist interested in inorganic and biologically inspired nanostructures: carbon nanotubes, graphene, and self-assembled DNA 'origami'. These objects reveal a variety of interesting electronic properties that may form a basis for future detectors and sensors, or serve as individual devices in quantum information processing.

Education & Training

  • Ph.D., Weizmann Institute of Science (Israel) 1998

  • M.S., Weizmann Institute of Science (Israel) 1998

  • B.S., Moscow Institute of Physics and Technology (Russia) 1991

Selected Grants

EMT/Nano: Biomimetic Self-Assembly of Functional Nanostructures for Computing and Communications awarded by National Science Foundation (Co-Principal Investigator). 2008 to 2011

Bioenabled Electronics: Bridging the Top-down and Bottom-up Fabrication Approaches awarded by Office of Naval Research (Principal Investigator). 2008 to 2011

CAREER: Local Probing of Electron-electron Interactions in Nanostructures awarded by National Science Foundation (Principal Investigator). 2003 to 2009

Electronic Properties of Nanostructures Templated on Self-Assembled DNA Scaffolds awarded by Army Research Office (Principal Investigator). 2005 to 2008

NER: Electronic Nanostructure Based on Self-Assembled DNA Scaffolds: Toward Biochemical Sensing awarded by National Science Foundation (Principal Investigator). 2006 to 2008


Ke, Chung Ting, et al. “Critical Current Scaling in Long Diffusive Graphene-Based Josephson Junctions.Nano Letters, vol. 16, no. 8, Aug. 2016, pp. 4788–91. Epmc, doi:10.1021/acs.nanolett.6b00738. Full Text Open Access Copy

Amet, F., et al. “Supercurrent in the quantum Hall regime.Science (New York, N.Y.), vol. 352, no. 6288, May 2016, pp. 966–69. Epmc, doi:10.1126/science.aad6203. Full Text Open Access Copy

Amet, F., and G. Finkelstein. “Valleytronics: Could use a break.” Nature Physics, vol. 11, no. 12, Dec. 2015, pp. 989–90. Scopus, doi:10.1038/nphys3587. Full Text Open Access Copy

Watson, Anne M., et al. “Rhodium nanoparticles for ultraviolet plasmonics.Nano Letters, vol. 15, no. 2, Feb. 2015, pp. 1095–100. Epmc, doi:10.1021/nl5040623. Full Text Open Access Copy

Li, Jinghua, et al. “Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes.Acs Nano, vol. 8, no. 8, Aug. 2014, pp. 8564–72. Epmc, doi:10.1021/nn503265g. Full Text Open Access Copy

Pilo-Pais, M., et al. “Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.Nano Letters, vol. 14, no. 4, Jan. 2014, pp. 2099–104. Epmc, doi:10.1021/nl5003069. Full Text Open Access Copy

Borzenets, I. V., et al. “Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures.Physical Review Letters, vol. 111, no. 2, July 2013, p. 027001. Epmc, doi:10.1103/physrevlett.111.027001. Full Text Open Access Copy

Chung, C. H., et al. “Nonequilibrium quantum transport through a dissipative resonant level.” Physical Review B  Condensed Matter and Materials Physics, vol. 87, no. 24, June 2013. Scopus, doi:10.1103/PhysRevB.87.245310. Full Text Open Access Copy

Mebrahtu, H. T., et al. “Observation of majorana quantum critical behaviour in a resonant level coupled to a dissipative environment.” Nature Physics, vol. 9, no. 11, Jan. 2013, pp. 732–37. Scopus, doi:10.1038/nphys2735. Full Text Open Access Copy

Yoon, Inho, et al. “Intracellular Neural Recording with Pure Carbon Nanotube Probes.Plos One, vol. 8, no. 6, 2013, p. e65715. Pubmed, doi:10.1371/journal.pone.0065715. Full Text Open Access Copy