# Berndt Mueller

### **James B. Duke Distinguished Professor of Physics**

Professor with Tenure

Professor with Tenure

### Overview

Prof. Mueller's work focuses on nuclear matter at extreme energy density. Quantum chromodynamics, the fundamental theory of nuclear forces, predicts that nuclear matter dissolves into quarks and gluons, the elementary constituents of protons and neutrons, when a critical density or temperature is exceeded. He and his collaborators are theoretically studying the properties of this "quark-gluon plasma", its formation, and its detection in high-energy nuclear collisions. His other research interests include symmetry violating processes in the very early universe and the chaotic dynamics of elementary particle fields. Prof. Mueller is the coauthor of textbooks on the Physics of the Quark-Gluon Plasma, on Symmetry Principles in Quantum Mechanics, on Weak Interactions, and on Neural Networks.

Yao, Xiaojun, et al. *Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in
Quark-Gluon Plasma*.

Müller, Berndt, and Andreas Schäfer. *Entropy Production in High Energy Processes*.

Müller, Berndt. *Hard Thermal Loops from Transport Processes*.

Yao, Xiaojun, et al. *Quarkonium Production in Heavy Ion Collisions: From Open Quantum System
to Transport Equation*.

Müller, Berndt. *Charmonium Production in Nucleus-Nucleus Collisions*.

Müller, Berndt. *Study of Chaos and Scaling in Classical SU(2) Gauge Theory*.

Eskola, Kari J., et al. *Self-Screened Parton Cascades*.