Adam P. Wax

Adam P. Wax

Professor of Biomedical Engineering

Professor of Physics (Secondary)

Faculty Network Member of the Duke Institute for Brain Sciences

Member of the Duke Cancer Institute

Bass Fellow

Office Location: 
2571 CIEMAS, Durham, NC 27708
Front Office Address: 
Box 90281, Durham, NC 27708-0281
Phone: 
(919) 660-5143

Overview

Dr. Wax's research interests include optical spectroscopy for early cancer detection, novel microscopy and
interferometry techniques.

The study of intact, living cells with optical spectroscopy offers the opportunity to observe cellular structure, organization and dynamics in a way that is not possible with traditional methods. We have developed a set of novel spectroscopic techniques for measuring spatial, temporal and refractive structure on sub-hertz and sub-wavelength scales based on using low-coherence interferometry (LCI) to detect scattered light. We have applied these techniques in different types of cell biology experiments. In one experiment, LCI measurements of the angular pattern of backscattered light are used to determine non-invasively the structure of sub-cellular organelles in cell monolayers, and the components of epithelial tissue from freshly excised rat esophagus. This work has potential as a diagnostic method for early cancer detection. In another experiment, LCI phase measurements are used to examine volume changes of epithelial cells in a monolayer in response to environmental osmolarity changes. Although cell volume changes have been measured previously, this work demonstrates for the first time the volume of just a few cells (2 or 3) tracked continuously and in situ.

Education & Training

  • Ph.D., Duke University 1999

  • M.A., Duke University 1996

  • B.S., Rensselaer Polytechnic Institute 1993

Pyhtila, J. W., and A. Wax. “Coherent light scattering by in vitro cell arrays observed with angle-resolved low coherence interferometry.” Progress in Biomedical Optics and Imaging  Proceedings of Spie, vol. 5690, July 2005, pp. 334–41. Scopus, doi:10.1117/12.592230. Full Text

Vo-Dinh, T., et al. “Progress in Biomedical Optics and Imaging - Proceedings of SPIE: Introduction.” Progress in Biomedical Optics and Imaging  Proceedings of Spie, vol. 5692, July 2005.

Graf, Robert N., and Adam Wax. “Nuclear morphology measurements using Fourier domain low coherence interferometry.Optics Express, vol. 13, no. 12, June 2005, pp. 4693–98. Epmc, doi:10.1364/opex.13.004693. Full Text

Chou, Derrick R., et al. “Low-cost, scalable laser scanning module for real-time reflectance and fluorescence confocal microscopy.Applied Optics, vol. 44, no. 11, Apr. 2005, pp. 2013–18. Epmc, doi:10.1364/ao.44.002013. Full Text

Curry, A., et al. “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy.Optics Express, vol. 13, no. 7, Apr. 2005, pp. 2668–77. Epmc, doi:10.1364/opex.13.002668. Full Text

Pyhtila, John W., and Adam Wax. “Improved interferometric detection of scattered light with a 4f imaging system.Applied Optics, vol. 44, no. 10, Apr. 2005, pp. 1785–91. Epmc, doi:10.1364/ao.44.001785. Full Text

Ahn, Andrew, et al. “Harmonic phase-dispersion microscope with a Mach-Zehnder interferometer.Applied Optics, vol. 44, no. 7, Mar. 2005, pp. 1188–90. Epmc, doi:10.1364/ao.44.001188. Full Text

Wax, Adam. “Low-coherence light-scattering calculations for polydisperse size distributions.Journal of the Optical Society of America. A, Optics, Image Science, and Vision, vol. 22, no. 2, Feb. 2005, pp. 256–61. Epmc, doi:10.1364/josaa.22.000256. Full Text

Curry, A., et al. “Measurement system for the high-throughput characterization of metal nanoparticles for biosensors.” 2005 Conference on Lasers and Electro Optics, Cleo, vol. 3, Jan. 2005, pp. 2160–62. Scopus, doi:10.1109/cleo.2005.202402. Full Text

Curry, A., et al. “Measurement system for the high-throughput characterization of metal nanoparticles for biosensors.” Optics Infobase Conference Papers, Jan. 2005.

Pages