Adam P. Wax

Adam P. Wax

Professor of Biomedical Engineering

Professor of Physics (Secondary)

Faculty Network Member of the Duke Institute for Brain Sciences

Member of the Duke Cancer Institute

Bass Fellow

Office Location: 
2571 CIEMAS, Durham, NC 27708
Front Office Address: 
Box 90281, Durham, NC 27708-0281
Phone: 
(919) 660-5143

Overview

Dr. Wax's research interests include optical spectroscopy for early cancer detection, novel microscopy and
interferometry techniques.

The study of intact, living cells with optical spectroscopy offers the opportunity to observe cellular structure, organization and dynamics in a way that is not possible with traditional methods. We have developed a set of novel spectroscopic techniques for measuring spatial, temporal and refractive structure on sub-hertz and sub-wavelength scales based on using low-coherence interferometry (LCI) to detect scattered light. We have applied these techniques in different types of cell biology experiments. In one experiment, LCI measurements of the angular pattern of backscattered light are used to determine non-invasively the structure of sub-cellular organelles in cell monolayers, and the components of epithelial tissue from freshly excised rat esophagus. This work has potential as a diagnostic method for early cancer detection. In another experiment, LCI phase measurements are used to examine volume changes of epithelial cells in a monolayer in response to environmental osmolarity changes. Although cell volume changes have been measured previously, this work demonstrates for the first time the volume of just a few cells (2 or 3) tracked continuously and in situ.

Education & Training

  • Ph.D., Duke University 1999

  • M.A., Duke University 1996

  • B.S., Rensselaer Polytechnic Institute 1993

Chalut, K., et al. “Quantitative phase microscopy with asynchronous digital holography system.” Optics Infobase Conference Papers, 2007.

Kelloff, Gary J., et al. “Workshop on imaging science development for cancer prevention and preemption.Cancer Biomark, vol. 3, no. 1, 2007, pp. 1–33. Pubmed, doi:10.3233/cbm-2007-3101. Full Text

Hunter, Martin, et al. “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection.Physical Review Letters, vol. 97, no. 13, Sept. 2006, p. 138102. Epmc, doi:10.1103/physrevlett.97.138102. Full Text

Curry, Adam, et al. “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture.Optics Express, vol. 14, no. 14, July 2006, pp. 6535–42. Epmc, doi:10.1364/oe.14.006535. Full Text

Pyhtila, John W., et al. “Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry.Journal of Biomedical Optics, vol. 11, no. 3, May 2006, p. 34022. Epmc, doi:10.1117/1.2209561. Full Text

Braun, Kelly E., et al. “Label-free measurement of microbicidal gel thickness using low-coherence interferometry.Journal of Biomedical Optics, vol. 11, no. 2, Mar. 2006, p. 020504. Epmc, doi:10.1117/1.2192767. Full Text

Pyhtila, John W., et al. “Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy.Optics Letters, vol. 31, no. 6, Mar. 2006, pp. 772–74. Epmc, doi:10.1364/ol.31.000772. Full Text

Curry, A. C., and A. Wax. “Sensitivity analysis of detecting plasmon resonance spectral shifts for nanoparticle based biosensors.” Optics Infobase Conference Papers, Jan. 2006.

Pages