Condensed Matter Seminar "Superconductivity in a disordered vortex lattice"

Monday, June 17, 2019 - 11:30am

Speaker(s): 
Amit Ghosal (Indian Institute of Science Education and Research Kolkata)

Orbital magnetic field and strong disorder weaken superconducting correlations acting individually on a type-II s-wave superconductor. The Abrikosov vortex lattice, resulting from the applied magnetic field, melts with an increase of the strength of the field, turning the system into a metal. Similarly, the presence of disorder causes a superconductor to insulator transition. Here we discuss the interplay of these two perturbations in two-dimensional superconductors. In particular, we show that the local superconductivity can actually strengthen due to interesting spatial reorganization or order parameters in the presence of strong disorder. While at weak disorder strengths the critical magnetic field for the suppression of superconducting energy gap matches with the critical field at which superfluid density vanishes, the two 'critical' fields diverge from each other with the increase of the disorder strengths. Our results have important consequences for the strong magnetoresistance peak observed in disordered superconducting thin films. We illustrate this by calculating the dynamical conductivity and analyzing its low-frequency behavior. Our results capture the non-monotonic evolution of the magnetoresistance, consistent with experiments. We will also demonstrate that the presence of even weak disorder causes the Caroli-deGennes-Matricon zero-bias peak in vortex-core density of states to disappear. The origin and consequences of such dramatic behaviors will be discussed.

Physics 298

Location Info