Jian-Guo Liu

Professor of Physics

Office Location: 
285 Physics Bldg, Durham, NC 27708
Front Office Address: 
Box 90320, Durham, NC 27708-0320
Phone: 
(919) 660-2500

Education & Training

  • Ph.D., University of California at Los Angeles 1990

  • M.S., Fudan University (China) 1985

  • B.S., Fudan University (China) 1982

Collaborative Research: Kinetic Models of Aggregation and Dispersion awarded by National Science Foundation (Principal Investigator). 2015 to 2018

Efficient Numerical Methods for Viscous Incompressible Flows awarded by National Science Foundation (Principal Investigator). 2009 to 2012

Degond, P, Liu, J-G, and Pego, RL. "Coagulation–Fragmentation Model for Animal Group-Size Statistics." Journal of Nonlinear Science 27.2 (April 2017): 379-424. Full Text

Huang, H, and Liu, J-G. "Error estimate of a random particle blob method for the Keller-Segel equation." Mathematics of Computation 86.308 (February 15, 2017): 2719-2744. Full Text

Liu, J-G, and Wang, J. "Global existence for a thin film equation with subcritical mass." Discrete and Continuous Dynamical Systems - Series B 22.4 (February 2017): 1461-1492. Full Text

Degond, P, Liu, J-G, Merino-Aceituno, S, and Tardiveau, T. "Continuum dynamics of the intention field under weakly cohesive social interaction." Mathematical Models and Methods in Applied Sciences 27.01 (January 2017): 159-182. Full Text

Liu, J-G, and Cong, W. "Uniform $L^{\infty}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model." Discrete and Continuous Dynamical Systems - Series B 22.2 (December 2016): 307-338. Full Text

Huang, H, and Liu, J-G. "A note on Monge–Ampère Keller–Segel equation." Applied Mathematics Letters 61 (November 2016): 26-34. Full Text

Huang, H, and Liu, J-G. "Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations." Discrete and Continuous Dynamical Systems - Series B 21.10 (November 2016): 3463-3478. Full Text

Liu, J-G, and Huang, H. "Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos." Kinetic and Related Models 9.4 (September 2016): 715-748. Full Text

Liu, J-G, and Cong, W. "A degenerate $p$-Laplacian Keller-Segel model." Kinetic and Related Models 9.4 (September 2016): 687-714. Full Text

Liu, J-G, and Wang, J. "A Note on L ∞ $L^{\infty}$ -Bound and Uniqueness to a Degenerate Keller-Segel Model." Acta Applicandae Mathematicae 142.1 (April 2016): 173-188. Full Text

Pages