David R. Smith

James B. Duke Professor of Electrical and Computer Engineering

Office Location: 
2527 CIEMAS Building, Durham, NC 27708
Front Office Address: 
Box 90291, Durham, NC 27708-0291
(919) 660-5376


Dr. David R. Smith is currently the James B. Duke Professor of Electrical and Computer Engineering Department at Duke University. He is also Director of the Center for Metamaterial and Integrated Plasmonics at Duke and holds the positions of Adjunct Associate Professor in the Physics Department at the University of California, San Diego, and Visiting Professor of Physics at Imperial College, London. Dr. Smith received his Ph.D. in 1994 in Physics from the University of California, San Diego (UCSD). Dr. Smith's research interests include the theory, simulation and characterization of unique electromagnetic structures, including photonic crystals and metamaterials.  

Smith is best known for his theoretical and experimental work on electromagnetic metamaterials. Metamaterials are artificially structured materials, whose electromagnetic properties can be tailored and tuned in ways not easily accomplished with conventional materials. Smith has been at the forefront in the development of numerical methods to design and characterize metamaterials, and has also provided many of the key experiments that have helped to illustrate the potential that metamaterials offer. Smith and his colleagues at UCSD demonstrated the first left-handed (or negative index) metamaterial at microwave frequencies in 2000--a material that had been predicted theoretically more than thirty years prior by Russian physicist Victor Veselago. No naturally occurring material or compound with a negative index-of-refraction had ever been reported until this experiment. In 2001, Smith and colleagues followed up with a second experiment confirming one of Veselago's key conjectures: the 'reversal' of Snell's law. These two papers--the first published in Physical Review Letters and the second in Science--generated enormous interest throughout the community in the possibility of metamaterials to extend and augment the properties of conventional materials. Both papers have now been cited more than 3,000 times each.

Since those first metamaterial experiments, Smith has continued to study the fundamentals and potential applications of negative index media and metamaterials. In 2004, Smith began studying the potential of metamaterials as a means to produce novel gradient index media. By varying the index-of-refraction throughout a material, an entire class of optical elements (such as lenses) can be formed. Smith showed that metamaterials could access a much larger range of design space, since both the magnetic and the electric properties could be graded independently. Smith and colleagues demonstrated several versions of gradient index optics, an activity that continues in his lab today. The introduction of controlled spatial gradients in the electromagnetic properties of a metamaterial flows naturally into the broad concept of transformation optics - a new electromagnetic design approach proposed by Sir John Pendry in 2006. To illustrate of the novelty of this design approach, Pendry, Schurig and Smith suggested in 2006 that an 'invisibility cloak' could be realized by a metamaterial implementation of a transformation optical design. Later that same year, Smith's group at Duke University reported the demonstration of a transformation optical designed 'invisibility cloak' at microwave frequencies. The concept of transformation optics has since attracted the attention of the scientific community, and is now a rapidly emerging sub-discipline in the field.

Smith's work on transformation optics has been featured in nearly every major newspaper, including a cover story in USA Today, The New York Times, The Chicago Tribune, The Wall Street Journal, The Washington Post and many more. Smith and his work on cloaking have also been featured on television news programs inlcuding The Today Show, Countdown with Keith Olbermann, Fox News, CNN and MSNBC. Smith's work has also been highlighted in documentary programs on The History Channel, The Discovery Channel, The Science Channel, the BBC and others.

Please also see Prof. Smith's personal website at http://people.ee.duke.edu/~drsmith for the most frequent updates.

Education & Training

  • Ph.D., University of California at San Diego 1994

  • B.S., University of California at San Diego 1988

Selected Grants

Investigating Imaging Modalities Enabled by Multi-Static SAR (MIMO SAR) awarded by National Reconnaissance Office (Principal Investigator). 2018 to 2019

Multipath Array Processing for Co-Prime and Under-Sampled Sensor Arrays awarded by Office of Naval Research (Principal Investigator). 2013 to 2018

The Information Content of Ocean Noise: Theory and Experiment awarded by University of California - San Diego (Principal Investigator). 2013 to 2018

Adapting Towed-Array Tilt for Passive Detection Gain Based on 3-D Noise Field Directionality Estimates awarded by Office of Naval Research (Principal Investigator). 2015 to 2018

Metamaterial Physical Layer Implementations of Advanced Computational and Compressive Imaging Schemes at Infrared Bands awarded by Air Force Office of Scientific Research (Principal Investigator). 2012 to 2017

Discrete Dipole Approximation as a robust technique for antenna design and metamaterial devices awarded by Kymeta Corporation (Principal Investigator). 2016 to 2017

Theory and Simulation of Optical Metasurfaces awarded by Intellectual Ventures Management, LLC (Principal Investigator). 2016

Hydrodynamic Wake Control with Flui-Permeable Metamaterials awarded by Office of Naval Research (Principal Investigator). 2013 to 2016

Transformation Optical Materials awarded by Army Research Office (Principal Investigator). 2009 to 2016

Broadband Field Directionally Mapping Using Small Maneuverable Acoustic Sensor Arrays awarded by Office of Naval Research (Principal Investigator). 2011 to 2015


Landy, N, Urzhumov, Y, Smith, DR, Landy, N, Urzhumov, Y, and Smith, DR. "Quasi-conformal approaches for two and three-dimensional transformation optical mediaQuasi-conformal approaches for two and three-dimensional transformation optical media (PublishedPublished)." Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications. July 1, 2014. 1-32. Full Text

Cui, TJ, Smith, DR, and Liu, R. "Preface." December 1, 2010. Full Text

Liu, X, Larouche, S, and Smith, DR. "Homogenized description and retrieval method of nonlinear metasurfaces (Accepted)." Optics Communications 410 (March 2018): 53-69. Full Text

Diebold, AV, Pulido-Mancera, L, Sleasman, T, Boyarsky, M, Imani, MF, and Smith, DR. "Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements." Journal of the Optical Society of America B: Optical Physics 34.12 (December 1, 2017): 2610-2623. Full Text

Smith, DR, Yurduseven, O, Mancera, LP, Bowen, P, and Kundtz, NB. "Analysis of a Waveguide-Fed Metasurface Antenna." Physical Review Applied 8.5 (November 29, 2017). Full Text

Marks, DL, Yurduseven, O, and Smith, DR. "Near-field multistatic radar reconstruction with stretched-phase Fourier accelerated multistatic imaging ." IET Radar, Sonar & Navigation 11.11 (November 1, 2017): 1718-1729. Full Text

Fromenteze, T, Yurduseven, O, Boyarsky, M, Gollub, J, Marks, DL, and Smith, DR. "Computational polarimetric microwave imaging." Optics Express 25.22 (October 30, 2017): 27488-27488. Full Text

Sleasman, T, Boyarsky, M, Imani, MF, Fromenteze, T, Gollub, JN, and Smith, DR. "Single-frequency microwave imaging with dynamic metasurface apertures." Journal of the Optical Society of America B 34.8 (August 1, 2017): 1713-1713. Full Text

Yurduseven, O, Marks, DL, Fromenteze, T, Gollub, JN, and Smith, DR. "Millimeter-wave spotlight imager using dynamic holographic metasurface antennas." Optics Express 25.15 (July 24, 2017): 18230-18230. Full Text

Shin, D, Kim, J, Kim, C, Bae, K, Baek, S, Kang, G, Urzhumov, Y, Smith, DR, and Kim, K. "Scalable variable-index elasto-optic metamaterials for macroscopic optical components and devices." Nature communications 8 (July 12, 2017): 16090-. Full Text

Pedross-Engel, A, Watts, CM, Smith, DR, and Reynolds, MS. "Enhanced Resolution Stripmap Mode Using Dynamic Metasurface Antennas." IEEE Transactions on Geoscience and Remote Sensing 55.7 (July 2017): 3764-3772. Full Text

Sleasman, T, Imani, MF, Yurduseven, O, Trofatter, KP, Gowda, VR, Marks, DL, Gollub, JN, and Smith, DR. "Near Field Scan Alignment Procedure for Electrically Large Apertures." IEEE Transactions on Antennas and Propagation 65.6 (June 2017): 3257-3262. Full Text


Gollub, JN, Yurduseven, O, Imani, MF, Odabasi, H, Sleasman, T, Trofatter, KP, Boyarsky, M, Marks, DL, and Smith, DR. "Computational imaging using frequency-diverse metasurfaces." May 15, 2017. Full Text

Yurduseven, O, Fromenteze, T, Gollub, JN, Marks, DL, and Smith, DR. "Computational frequency-diverse microwave imaging using an air-filled cavity-backed antenna." May 15, 2017. Full Text

Yurduseven, O, Gollub, JN, Fromenteze, T, Marks, DL, and Smith, DR. "Optimization of frequency-diverse antennas for computational imaging at microwave frequencies." May 15, 2017. Full Text

Fromenteze, T, Boyarsky, M, Gollub, J, Sleasman, T, Imani, M, and Smith, DR. "Single-frequency near-field MIMO imaging." May 15, 2017. Full Text

Smith, DR, Reynolds, MS, Gollub, JN, Marks, DL, Imani, MF, Yurduseven, O, Arnitz, D, Pedross-Engel, A, Sleasman, T, Trofatter, P, Boyarsky, M, Rose, A, Odabasi, H, and Lipworth, G. "Security screening via computational imaging using frequency-diverse metasurface apertures." January 1, 2017. Full Text

Boyarsky, M, Sleasman, T, Pulido-Mancera, L, Imani, MF, Reynolds, MS, and Smith, DR. "Alternative synthetic aperture radar (SAR) modalities using a 1D dynamic metasurface antenna." January 1, 2017. Full Text

Sleasman, T, Imani, MF, Boyarsky, M, Pulido-Mancera, L, Reynolds, MS, and Smith, DR. "Reconfigurable metasurface aperture for security screening and microwave imaging." January 1, 2017. Full Text

Pulido Mancera, L, Fromenteze, T, Sleasman, T, Boyarsky, M, Imani, MF, Reynolds, MS, and Smith, DR. "Adapting range migration techniques for imaging with metasurface antennas: Analysis and limitations." January 1, 2017. Full Text