NS

Biophysics II

Quantitative understanding of biological systems through the application of physical principles. Course will emphasize topics that span multiple length and time scales, and different levels of biological organization. Two to four topics per semester, including possibly organismal motion from molecular processes to whole organisms, nervous systems from membrane channels to neuronal networks, noise in biology, novel biophysical technologies, etc. Prerequisite: BIOLOGY 201L, MATH 212 and 216 or equivalent, and calculus based introductory physics or permission of the instructors.

General Physics I

First part of two-semester, calculus-based, physics survey course for students planning study in medicine or the life sciences (the second semester course may be developed in the future for Duke Kunshan University). Topics: kinematics, dynamics, systems of particles, conservation laws, statics, gravitation, fluids, oscillations, mechanical waves, sound, thermal physics, and the laws of thermodynamics. This course will cover the same material in Duke PHYSICS 141L (lecture) and PHYSICS 141D (discussion) courses. Exams may be take-home exams.

Energy in the 21st Century and Beyond

Concepts of energy from a scientific perspective for understanding problems of energy conversion, storage, and transmission in modern society. Topics include fundamental concepts (kinetic and potential energy, heat, basic thermodynamics, mass-energy equivalence), established power generation methods and their environmental impacts, emerging and proposed technologies (solar, wind, tidal, advanced fusion concepts). Final team project. Sophomores, juniors, and seniors from non-science majors are particularly encouraged to attend; no previous knowledge of physics is assumed.

Introductory Seminar on Big Questions in Physics

Introduction to six big questions representing frontiers of 21st century physics, such as what are the ultimate laws of nature, how does complex structure arise, and how can physics benefit society. Classes will involve presentations by researchers and by students, discussions of journal articles, and tours of physics labs involved with related research. Prequisites: Precalculus and at least one quantitative science course at the high school level, such as chemistry or physics. Half course.
 

Frontiers of 21st Century Physics

This course is a one-semester introduction to current research topics in physics, organized around six “Big Questions” in physics, including: what are the ultimate laws of nature, how does complex structure arise, and how can physics benefit society? This course is more quantitative than 131S and is designed for prospective physics majors as well as those interested in deeper understanding of the physical world. Prerequisites: Precalculus and at least one quantitative science course at the high school level, such as chemistry or physics. One course.
 

Quantum Optics

The linear and nonlinear interaction of electromagnetic radiation and matter. Topics include lasers, second-harmonic generation, atomic coherence, slow and fast light, squeezing of the electromagnetic field, and cooling and trapping of atoms. Prerequisite: PHYSICS 465 and 560. One course.

Astrophysics

An introductory survey of astrophysics with an emphasis on topics of current interest. Introduction to General Relativity, Stellar and Galactic Evolution, Standard Cosmology, Big-Bang Nucleosynthesis, Early Universe, Neutrino Astrophysics, Supernovae and Cosmic Rays, Special Topics. Prerequisites: PHYSICSs 361, 362, 363, 464; PHYSICS 465 is recommended. One course.

General Relativity

This course introduces the concepts and techniques of Einstein's general theory of relativity. The mathematics of Riemannian (Minkowskian) geometry will be presented in a self-contained way. The principle of equivalence and its implications will be discussed. Einstein's equations will be presented, as well as some important solutions including black holes and cosmological solutions. Advanced topics will be pursued subject to time limitations and instructor and student preferences. Prerequisite: A familiarity with the special theory and facility with multivariate calculus. One course.

Computational Physics

Introduction to numerical algorithms and programming methodologies that are useful for studying a broad variety of physics problems via simulation. Applications include projectile motion, oscillatory dynamics, chaos, electric fields, wave propagation, diffusion, phase transitions, and quantum mechanics. Prerequisites: PHYSICS 264L and 363. Experience with a programming language is desirable, but can be acquired while taking the course. One course.

Pages